Blood Clots May Be the Root Cause of All Heart Disease- Interview with Dr. Malcolm Kendrick

Mercola Videos

In this interview, repeat guest Dr. Malcolm Kendrick, a board-certified family physician and author of the book, “The Clot Thickens: The Enduring Mystery of Heart Disease,” reviews the underlying mechanisms for heart disease, which for the last century has been the leading cause of death in the U.S. The thrombogenic hypothesis asserts that blood clotting is the basic underlying pathological process that causes all heart disease
When a blood clot forms on your artery wall, it will typically be covered over and broken down. A problem arises, however, when the blood clot is not fully eliminated and becomes a ‘vulnerable’ point, and another blood clot forms at the same point. Over time this grows and becomes what’s conventionally referred to as atherosclerotic plaque. A clot will form where endothelial cells have been stripped away, or are seriously damaged The blood clot will then be covered over by endothelial progenitor cells, which float around in your blood stream at all times. When progenitor cells find an area of damage, where a blood clot has formed, they attach themselves to that area, creating the new endothelial layer. This repair process can gradually create a thickening inside the artery wall itself. In almost everyone, the process of endothelial damage and blood clotting is an ongoing process. Which means that problems only occur when the damage/blood clotting process occurs faster than the repair process, at which point you will end up with plaque buildup. This thickens the arterial wall, forcing blood flow through a narrower gap. When a large blood clot forms on top of an existing plaque, in this already narrowed area, you can end up with a heart attack or stroke. Common causes of endothelial damage include such things as viral infections, high blood sugar levels, smoking, diabetes, heavy metals such as lead and aluminum, and high blood pressure. Article link: Subscribe for the latest health news: Visit our website: Listen to our podcasts: Find us on Social Media
Twitter: Les artikkelen direkte fra kilden